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1. INTRODUCTION 

The prediction of the vibrational circular dichroism (VCD) spectrum of a chiral molecule at the 

harmonic level of approximation requires the calculation of its equilibrium geometry, harmonic force field, 

atomic polar tensors, and atomic axial tensors [1-3]. These molecular properties are most accurately 

calculated using ab initio methods [4-7]. While predictions of VCD spectra based on ab initio calculations 

at the self-consistent-field (SCF) level of approximation have achieved substantial success in reproducing 

experimental spectra [8-25], they have been significantly limited by the inherent deficiencies of the SCF 

approximation. Accurate calculations require post-SCF methods. 

Recently, the feasibility of the calculation of accurate harmonic force fields using post-SCF methods 

has increased sufficiently to permit their use in predicting VCD spectra of experimentally accessible chiral 

molecules. Consequently, it is now practicable to compare experimental VCD spectra to theoretical 

predictions which are not limited in accuracy by uncertainties in the harmonic force field. In turn, the 

origins of the remaining discrepancies between theory and experiment can be more precisely analyzed. 

Here we report the first calculations of VCD spectra which take advantage of this progress. Specifically, 

we report calculations of the VCD spectrum of trans-2,3-dideuteriooxirane (1) based on a harmonic force 

field obtained at the MP2 level of approximation using a large basis set The results are compared to the 

recently published experimental VCD spectra of Freedman et al. [26] for solutions of 1. The accuracy 

of the calculations is limited only by the incomplete inclusion of correlation in the calculation of atomic 

axial tensors and by the absence of any consideration of anharmonicity and condensed-phase effects. The 

magnitudes of the errors arising from the neglect of the contributions are evaluated. The analysis is 

assisted by comparisons of experimental vibrational frequencies and unpolarized absorption intensities for 

1, oxirane 2, and oxirane-d4 (3)—in solution for 1 [26] and in the gas phase for 2 and 3 [27-28]—to the 

results of calculations using the same force field and atomic polar tensors as used in predicting the VCD 

of 1. There results a more sophisticated analysis of the deviations between a calculated and an 

experimental VCD spectrum than heretofore achievable. 

2. RESULTS AND DISCUSSION 

The harmonic vibrational frequencies and rotational strengths of 1, calculated using a [8s6p3d/6s3p] 

basis set (hereafter referred to as VD/3P) [7], are given in Table 1. The harmonic force field and atomic 

polar tensors P£« were obtained at the MP2 level via analytical derivative techniques [29] using a 
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CRAY-2 version of GAUSSIAN 92 [30].   Atomic axial tensors, Maß, were calculated using the 

distributed origin gauge [2,7,13,31,32], when 

Maß=aaß)X+4^!*ßWYPaV (1) 

where (Iaß) is the atomic axial tensor of atom X evaluated with the origin at the equilibrium position of 

nucleus X, if £. The "local" atomic axial tensors, (I(XR)\ were calculated at the SCF level via analytical 

derivative techniques [33,34] using a Cray Y-MP version of CADPAC 5.0 [35]. The atomic axial tensors 

are thus only partially corrected for correlation. The use of the distributed origin gauge guarantees origin- 

independent rotational strengths [2]. The VCD spectrum derived from the calculated rotational strengths 

and the experimental VCD spectrum of Freedman et al. [26] are shown in Figures 1 and 2 and are in 

obvious correspondence, permitting unambiguous assignment of all experimental features to fundamental 

transitions. The assignment, together with the rotational strengths obtained by Freedman et al. from the 

experimental VCD spectrum, is given in Table 1. 

The accuracy of predicted rotational strength is a composite function of the accuracies of the harmonic 

force field, the atomic polar tensor and the atomic axial tensors, and, in addition, the magnitude of 

anharmonicity and condensed-phase contributions, which are not included in the theoretical formalism. 

The accuracies of the force field and atomic polar tensors and the significance of anharmonicity can be 

independently assessed by comparison of the frequencies and unpolarized absorption intensities predicted 

for the undeuterated and perdeuterated isotopomers of oxirane, oxirane (2) and oxirane - d4 (3), with the 

accurate gas-phase results of Nakananga [27-28]. As seen from Table 2, excluding C-H and C-D 

stretching modes, calculated and observed frequencies differ by 2.2% on average; the maximum error is 

3.9%. The errors for C-H and C-D stretching modes are substantially larger: 5-7% and 4-5%, 

respectively. Although harmonic frequencies for isotopomers of oxirane have not been derived from 

experimental data, the contributions of anharmonicity are known in many other small molecules [4]. By 

comparison with such data, it is clear that the calculated errors for 2 and 3 are comparable to 

anharmonicity contributions and that, with the respect of the force field, the harmonic limit has been 

effectively realized. In the case of intensities, excluding the C-H and C-D stretching modes, calculated 
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Figure 1. Predicted (a) and experimental (b) VCD spectra of 1. The predicted spectrum results from 
frequencies and rotational strengths are given in Table 1. Lorentzian band shapes are assumed 
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Figure 2. Predicted (a,c) and experimental (b,d) VCD spectra result from frequencies and rotational 
strengths given are in Table 1. Lorentzian band shapes are assumed fl 1,151. The half-width 
at half-height (V) is arbitrarily chosen to be 10.0 cm"1 for all bands T261. 



and experimental intensities differ on average by 0.8 km/mol, while the quoted experimental uncertainties 

are on average 0.9 km/mol. Thus, calculated and experimental intensities agree within experimental error. 

This result confirms the excellent accuracy of the force field and of the normal coordinates derived 

therefrom. In addition, it demonstrates that the errors in intensities arising from errors in the calculated 

atomic polar tensors and from anharmonicity are both less than experimental error. Thus, with respect 

to intensities the harmonic limit has been effectively reached and is sufficient. In the case of the C-H and 

C-D stretching modes, the differences between calculated and experimental intensities are significantly 

larger and, in addition, are substantially greater than the experimental errors. The differences for the C-H 

modes are appreciably larger than for the C-D modes. In view of the excellent accuracy of the 

calculations for all other modes, these discrepancies can only be due to anharmonicity. Thus, for these 

specific modes, the harmonic limit is clearly insufficient. 

Since the same force field and atomic polar tensors determine the frequencies and intensities of all 

isotopomers of oxirane, the frequencies and intensities of 1 should be as accurately predicted as those of 

2 and 3. Comparison to the results of Freedman et al. [26] (Table 1) supports this expectation. Excluding 

C-H and C-D stretching modes, the error in frequencies is 2.5% on average, the maximum error being 

3.4%. The error in intensities is 1.5 km/mol on average. Although the number of modes on which these 

statistics are based is small, the average errors are very similar to those for 2 and 3. Experimental 

uncertainties were not reported for 1, and we cannot directly compare the differences between theory and 

experiment to experimental errors. In contrast to 2 and 3, the experimental parameters for 1 are derived 

from spectra in solution. The comparable accuracies of predicted frequencies and intensities for 1,2, and 

3 lead to the conclusion that condensed-phase effects are small, i.e., that they are less than either 

anharmonicity effects or experimental errors, whichever are limiting. 

The predicted rotational strengths of 1 are in perfect agreement with the experimental parameters 

derived by Freedman et al. with regard to both sign and relative magnitude (Table 1). The differences 

in absolute magnitudes of predicted and experimental rotation strengths could originate either in theoretical 

or in experimental error. Experimental uncertainties were not reported and are not easily estimated. For 

three bands, rotational strengths are estimates from gas-phase data. In addition, the C-H and C-D 

stretching rotational strengths are particularly susceptible to uncertainty since they derive from the 

deconvolution of unresolved, oppositely signed couplets. To a substantial degree, the differences between 

predicted and experimental rotational strengths are likely to be attributable to experimental uncertainties. 

With regard to the calculations, leaving aside the C-H and C-D stretching modes, the previous discussion 
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of unpolarized absorption intensities shows that errors in rotational strengths arising from errors in the 

harmonic force field and atomic polar tensors, from the neglect of anharmonicity and from the neglect of 

solvent effects, should be insignificant (assuming that solvent effects on VCD intensities are no longer 

than on unpolarized absorption intensities). There remain the errors arising from the incomplete inclusion 

of correlation in the atomic axial tensors—specifically, from the evaluation of the "local" atomic axial 

tensors (I^R)*
-
 at the SCF level of approximation. If experimental errors are ignored, the magnitudes of 

these errors are the differences between calculated and experimental rotational strengths, given in Table 1. 

The uncertainties in these values are equal to the experimental uncertainties. In one case—the 

1,266/1,226-cm-1 band—the difference is large; in all other (four) cases it is relatively small In the case 

of the C-H and C-D stretching modes, as discussed previously, anharmonicity is not negligible, and 

experimental rotational strengths are particularly uncertain. The considerable difference between the 

theoretical and experimental rotational strengths for the C-H stretching modes is not surprising, therefore, 

while the close agreement for the C-D stretching modes is likely to be fortuitous. For these modes, the 

contributions of errors in atomic axial tensors to differences between experimental and calculated rotational 

strengths, while unlikely to be negligible, cannot yet be disentangled. 

The reasonableness of the preceding analysis can be further probed in several ways. First, we can 

examine the "P-M" and "PL" contributions to the rotational strengths [2,15,36] originating respectively 

in the first and second terms in the atomic axial tensors (equation 1).   The former is subject to the 

correlation errors of the SCF (Iaß) tensors while the second in not Significant errors are thus to be 
expected only when the "P-M" term is dominant and not when the "P-L" term is dominant   The 

magnitudes of these two contributions are given in Table 1. In most cases, the "P-M" term is dominant. 

In the particular case of the 1,266/1,226-cm-1 mode, the only band for which the estimated correlation 

error was large, the "P-M" contribution is overwhelmingly dominant.   Our analysis is therefore not 

inconsistent with the relative magnitudes of "P-M" and "P-L" contributions to the rotational strengths. 

In addition, we can examine the sensitivity of rotational strengths to the exclusion of correlation in 

the calculation of the atomic polar tensors. VD/3P atomic polar tensors were calculated at the SCF level 

of approximation (using analytical derivative methods and the Cray Y-MP implementation of CADPAC 

5.0) and substituted for the MP2 atomic polar tensors in calculating unpolarized absorption intensities for 

1, 2, and 3 and rotational strengths for 1, with the results given in Tables 1 and 2. With very few 

exceptions, unpolarized absorption intensities are increased, the largest increases being around a factor of 

2. The rotational strengths of 1 are affected in a more complex manner, as is to be expected since changes 



in the atomic polar tensors affect both electric and magnetic dipole transition moments, in magnitude and 

in direction. In one case, the 1,147/1,109-cm-1 transition, the sign is changed. The magnitudes of the 

changes are given in Table 1 and can be seen to vary considerably. The errors in the calculated rotational 

strengths arising from the neglect of correlation either in atomic polar tensors or in atomic axial tensors 

must be comparable, since atomic polar and axial tensors are inextricably linked [7]. The values obtained 

by calculation in the case of the atomic polar tensors and from differences between theory and experiment 

for the atomic axial tensors are consistent with this expectation. 

3.  CONCLUSION 

In predicting vibrational spectra, a harmonic force field can be defined as accurate when the residual 

errors in vibrational energies, wave functions, and transition moments are insignificant relative to the 

contributions of anharmonicity. There is no practical advantage to be gained from improvements beyond 

this level. Following recent developments in post-SCF methods, it is now practicable to calculate 

harmonic force fields of this level of accuracy for chiral molecules whose VCD spectra can be observed 

experimentally. We have demonstrated this advance here for the specific case of trans-2,3- 

dideuteriooxirane (1). The harmonic force field is obtained from a large basis set MP2 calculation, using 

semidirect analytical derivative methods. The excellent accuracy of large basis set MP2 harmonic force 

fields has been documented by Amos, Handy, and coworkers [37-39]. The development [29] of a 

semidirect implementation of the analytical derivative methodology for the calculation of MP2 harmonic 

force fields [37,40] permits this accuracy to be realized for oxirane and its isotopomers. The accuracy of 

the harmonic force field is documented by comparison of calculated and experimental gas-phase 

vibrational frequencies and unpolarized absorption intensities for oxirane (2) and oxirane-d4 (3). Errors 

in vibrational frequencies are attributable predominantly to anharmonicity. Intensities, calculated using 

MP2 atomic polar tensors [41], are within experimental error with the exception of C-H and C-D 

stretching modes; the differences here can be attributed to anharmonicity. The harmonic force field is 

equally successful in accounting for the frequencies and unpolarized absorption intensities of 1 in solution, 

showing that solvent effects are not significant. Consequently, errors in VCD intensities predicted for 1, 

with the exception of the C-H and C-D stretching modes, originate predominantly in the absence of 

correlation in the "local" atomic axial tensors, calculated at the SCF level of approximation. For the 

modes whose rotational strengths were reported, these correlation errors are of reasonable magnitude and, 

with one exception, small. 



This woik constitutes the first comparison to experimental data of a theoretical prediction of a VCD 

spectrum based on an accurate harmonic force field. Prior predictions of VCD spectra based on ab initio 

calculations at the SCF level of approximation [8-25], including those for 1 [10,12,17,36], have achieved 

considerable success in replicating experimental VCD spectra. However, as a result of the substantially 

lower accuracy of the force fields used in these calculations, a detailed analysis of the contributions of the 

various possible sources of error has not been possible. As demonstrated here, accessibility of an accurate 

harmonic force field removes a major source of error from the VCD spectra and greatly simplifies the 

analysis of the remaining errors. Given the rapidity with which post-SCF ab initio calculations are 

increasing in feasibility, the range of chiral molecules for which accurate harmonic force fields are 

accessible and comparable analyses of VCD intensities are possible can be expected to increase 

substantially in the very near future. This prospect in turn serves to emphasize the importance of 

additional experimental studies of small, rigid chiral molecules. Despite the efforts of several groups, the 

number of molecules in this category for which VCD spectra have been measured remains small. Further, 

it is vital for analyses of the type presented here that the definition of the quantitative accuracy of 

experimental rotational strengths be addressed more critically. While the measurement of VCD spectra 

with excellent signal-to-noise ratios at acceptable spectral resolution is now straightforward [42,43], there 

still remains room for considerable improvement in regard to both the control of artifactual distortions and 

the absolute calibration of spectra. 

Our work demonstrates that the errors in rotational strengths arising from the absence of correlation 

in the calculation of "local" atomic axial tensors are not insignificant. Consequently, the development and 

implementation of post-SCF methods for the calculation of atomic axial tensors is a prerequisite to the 

accurate calculation of rotational strengths at the harmonic level of approximation. It is to be hoped that 

these will occur in the near future. 
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